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Abstract. A one-dimensional system, with L sites and periodic boundary conditions, is 
considered. N divalent atoms occupy sites. The atoms have two orbitals, electron hopping 
is allowed between nearest neighbour atoms, and intra-atomic electron correlation is taken 
into account. The ground and first excited many-body states are estimated using a basis, 
appropriate to weak interatomic coupling, in which multiple nearest neighbour resonating 
valence bond excitations, appropriately symmetrised, are included. Ordered and disordered 
systems are considered, for large L. 

1. Introduction 

There are a great deal of experimental data on the electronic and thermDdynamic 
properties of mercury for densities ranging from that of the solid, through the expanded 
liquid regime, to gaseous densities [l]. The liquid, at coexistence with its vapour, is 
known to be metallic down to densities of approximately 1.6 times the critical density 
for the vapour-liquid phase transition ( p ,  = 5.77 g cm-3 = 1.7 x lo2* atoms ~ m - ~ ) .  
Neutron scattering data for expanded metals indicate that, on expansion, the number 
of nearest neighbours (NN) decreases while the NN distance is almost constant [2]. Such 
data have led to a model of expanded liquid mercury in which a background lattice (fixed 
NN distance) is occupied by atoms and vacancies, with the fraction of atoms adjusted to 
fit the experimental density. Based on this model, there has been the suggestion that 
metallisation ocurs when atoms have ‘sufficient’ numbers of N N ,  and such a ‘sufficiency’ 
percolates through the system. A random vacancy distribution was postulated in that 
model [3]. We have decided to pursue the properties of divalent-atom systems with the 
motivation noted above. 

2. Ourmodel 

We propose to study a particularly simple model in which the level of approximation is 
well defined. As a preliminary exercise we have studied the one-dimensional system of 
L sites (periodic boundary conditions) occupied by N atoms ( N  s L ) .  Each atom has 

t A preliminary reeport on part of this work was presented at the 7th International Conference on Liquid and 
Amorphous Metals (LAM 7), Kyoto, Japan, to be published as a special issue of the Journal of Non-Crystalline 
Solids and edited by Professor H Endo. 
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two orbitals (labelled s and p) and the atomic Hamiltonian describing low energy states 
includes correlations: 

Ha = c [ E &  + Epnpu + (~, /2)nsunsu’  + U,,, 1 nsunpu, + U,,, , nsunpol 
U 

with U a spin label and U ’  the opposite spin, s labelling the lower atomic orbital and p 
the upper, the E representing one-electron energies, Urepresenting correlation energies, 
and the n being appropriate fermion number operators. 

The atomic Hamiltonian is diagonal in the same basis as are 9 and S , .  The low energy 
states of the neutral, divalent atom (A’) can be represented by the spin singlets with 
energies 

and the spin triplets ( S ,  = 0, +1) with energies 

The five atomic parameters can be related to the excitation energies B and B’ of the 
neutral atom, the excitation energy of A + ,  and the ionisation potentials of A +  and Ao. 
Thus the typical values for an atom resembling Hg would be of order (in eV): 

E ,  = -8.4 = 1.5 B=6.7  . B’=4.9 .  

2E, + U ,  = 0 E ,  + + UsPT 1 B 

E ,  + E ,  + U,,, 1 B E ,  + E ,  + U,,, t E B’. 

The low energy states of a collection of such atoms placed on a lattice, with sites 
labelled by i and NN sets labelled (i ,  j ) ,  can be described by 

H = 2 Hai + E [tsp(CLuCjpu + ci+pucjsu) + t s sCLuCjsu  + t p p ~ : ~ u ~ j p u l  
i ( i . j)  

with c+ and c being fermion creation and annihilation operators and the t representing 
NN hopping matrix elements. For typical atoms under consideration, the ratios t /U e 1. 
Again for Hg-like atoms, reasonable numerical values (in eV) are tsp = 0.44, t,, = -0.41, 
tpp = 0.69 (giving the cohesion of the free dimer as approximately 60 meV) [4].  The 
auxiliary definition of the energy of a charge transfer pair of atoms, C = B + U,, , , (= 
13 eV) is useful. Note that the interatomic couplings do not flip spins. 

For small t / U ,  examination of the free dimer (no periodic BC) and the ring trimer set 
the stage for obtaining results for the L-site ring with L atoms, and with N (<L) atoms, 
in the limit L-  and, then, also N- w with NIL = p .  For the dimer, the states can 
be classified as eigenstates of S 2 ,  S , ,  and site interchange (+: totally symmetric; -: 
antisymmetric). A restricted basis suffices, for small t /U ,  to make the Hamiltonian 
block-diagonal 

- ( t s s  + ‘pp) I I -Zss + tpp)  B 
00-: 
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+ [(RZS t R2P 1 RlS t R1s L ) - (R2s L RZP t R1s T R,s J>1) 
with the parentheses implying normalised anti-symmetrisation with respect to electron 
interchange, where Rj  labels the site, s or p the atomic orbital, and the arrows the z 
component of the electron spin. Thus, the square brackets enclose spin singlets (NN 
resonating valence bond (RVB) states) and it can be seen the states are symmetric with 
respect to site interchange. The bases for the remaining Hamiltonian blocks are clear 
generalisations of the above. Already, the inclusion of the state with diagonal element 
B in 00+ only contributes corrections of order to the ground state, while similar 
contributions from other states in the basis (the one at 2B,  for example) have been 
ignored, as have those yielding even higher order energy corrections, in t /U.  This state 
is included to give an explicit example of such effects and similar states must be included 
to lowest order in the trimer and larger rings. For the remaining symmetries, the lowest 
state of each is obtained from the blocks above, to order ( t / q 2 .  

To the lowest order, the dimer states consist of an isolated 00+ ground state at 

-a2C{1 + [ ( tpp  - tSs)’/BC - a’]) 

with a = 2tsp/C, the square bracket showing the difference of fourth-order contributions, 
The lowest energy excitation gap (OO+ to 1 +- 1+ or lo+ ,  depending on whether B’ or 
B is smallest, and assuming tss and tpp have opposite sign) has 

(for 
The ring trimer has a special feature in that all three sites are mutually nearest 

neighbours. To lowest order, the ground state is again 00+ (now totally symmetrised 
over the three sites). Its energy is -3&, which is obtained by admixing to the atomic 
ground state (at 0) a fully symmetrised, charge transfer RVB. Assuming B‘ < B ,  the 
lowest excited state is 11+ and arises from diagonalising 

replace B’ by B in above), to order (t/U),”. 

B’ a t s s  - tpp) 2tsp 

m s s  - tpp) c - (tss - tpp) f i t s p  

2tsp f i t s p  B’ + C 

yielding, to lowest order, an energy of 

(Again, let B replace B’ ,  if it is smaller, to get the lowest 10+ state.) Hence, 
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3. Long ordered rings 

An estimate for the ground state of the L-atom ring (large L )  is easily obtained (to order 
(t/U)’) by diagonalising a tridiagonal block of 00+ symmetry states: coupling the atomic 
ground state to a symmetrised state with one charge transfer RVB excitation, and it to 
one with two symmetrised RVBS (all charge transfer is to NN),  etc. The equal spacing of 
the diagonal matrix elements and the tridiagonal form allow rewriting H in terms of 
boson creation and annihilation operators (a+ and U )  as 

H = a+aC + aC(fa+ + uf) f =  [ ( L  + 2 - 2a+a)(L + 1 - 2a+a)/(L - a+a)]1’2. 

For large L and small a, an expansion off is appropriate. Keeping two corrections for 
large L yields 

H / C  = [a+a + aVZ(1 + 3/2L - 1/8L2)(a+ + U ) ]  

- (a/8VZ>(12 + ~ ~ / L ) ( u + u + u  + U’UU) .  

The definition: b = a + ag/L(l + 3/2L - 1/8L2), with [b,  b+] = 1 ,  diagonalises the 
square bracket and yields 

H / C =  -[a2L(1 - 3a2) + 3a2(1 - B a 2 )  + (2a2/L)(1 - ? L U * ) ]  

+ b+b[l + 6a2(1 + 35/12L)] - ( 3 ~ ~ ~ 2 / , / 8 ) ( 1 2  + 17/L)(1 + 3/2L 

- 1/815~)~(b+ + b )  + (@*/8)(1 + 3/2L - 1/8L2)(b+b+ + bb) 

- (a/SVZ)(12 + 17/L)(b+b+b + b+bb)+ higher order terms. 

It can be seen that further transformations, adding a constant to b ,  yield higher order 
corrections (O(&)) to the ground state and O(a4) to the separation between these 
states. For small enough a2 the expansion is convergent but, in limiting the basis, we 
neglected corrections of order a‘, hence the above is exact to order a’ and large L :  

H / C =  - a 2 [ L  + 3 + 2/L] + b+b[l + 6a2(1 + 35/12L)]. 

The constant term gives the ground state binding of the L-atom ring. (The 00+ exci- 
tations are not especially interesting since we know they do not give rise to the lowest 
energy excitation; in fact such a state is not even the lowest at an energy =C above the 
ground state.) The ground state eigenvector can also be obtained using the original 00+ 
basis of q symmetrised charge transfer RVBS, for small t /U:  

L P  

q = o  
I & ) =  d q l q )  w i t h b I g d ) = O a n d a l q ) = ~ / q l q -  1). 

Thus, 

g ( q )  = /dq/do12 = (a*L)q/q!  

which, for large L ,  peaks at 

40 = a 2 L  - 4 - (1/4a2L)* + . . . . 
For q near qo: 

g ( q )  = [ ( I / ~ ? G ~ ~ L ) ~ / ~  e x p ( a 2 ~ ) ]  exp - [ (q  - q 0 ) ’ / 2 ( $ a 2 ~ ) ] .  

The ground state has an average of a2L symmetrised (OO+) charge transfer RVBS, with 
a variance of [5a2L]1/2, on the L sites. 
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From the dimer and trimer results, it is deduced that the first excitation of the L-site 
ring should be at an excitation energy near B’ ( l l f )  or B (lo+),  whichever is smaller 
(we assume B’ in what follows but if it were B, the result would be obtained by replacing 
B’ by B). The 11+ basis states are constructed by appropriate symmetrisation of a B’ 
excitation ( I Os)) which couples to one with a B’ excitation and a singlet charge transfer 
RVB ( 1  Is)), as well as to another, with a triplet charge transfer excitation (at NN) (lot)). 
Other states in the basis are Ips): a B’  excitation and p singlet, charge transfer RVBS; and 
(pt):  a triplet NN charge transfer excitation and p singlet, charge transfer RVBS ( p  = 1, 
2 . . .). The 11 + block of H has non-zero elements 

Hos,os = B’ 

H @ - l ) s . p s  = [P(L - 2P + 
Hps,pt  = [2(L - 2P + 1)/(L - P - 1)11/2(tss - tpp) 
HOt,Jt = ( L  - 3)1’2aC 

H p s , p s  = B’ + PC Hpt,pt = (P + 1)C 
- 2P)/(L - P)11’2(Uc 

H(p- l ) t . p t  = [P(L - 2P)(L - 2P - forp  > 1 

with appropriate adjoints. Note that, in contrast to the ring trimer, Hot,ls = 0 since no 
site is neighbour to a pair of nearest neighbours. 

By first diagonalising the coupling between Ips) and lpt), one obtains O(a2) cor- 
rections to the diagonal elements, and 0(a2)  couplings between these corrected states 
(they may be ignored, as they give O(a4) corrections to the energy-comparable to 
those ignored in limiting the basis). The block is thus brought into two, decoupled, 
tridiagonal blocks with bases 

- P - W 2 a C  

bsc) = IPS) + [2(L - 2P - 1)/(L - P - W 2 [ ( t p p  - tSS)/(C - B’) lb t )  

IPtC) = IPt) - [2(L - 2P - 1)/(L - P  - 1>1”2[(tpp - t s M c  - B’)lIps) 
normalised to order t /U .  The lowest state of this symmetry comes from the Ips,) block. 
It may be rewritten, with boson creation and annihilation operators, as 

H = B’ + U’UC - [2(tpp - t s s )2 / (C - B’)][(L - 1 - 2a+a)/(L - 1 - .+U)] 

+ aC(f1a + a’f1) 

f l  = { [ ( L  + 1 - 2a+a)(L - 2a+a)]/(L - a+a)}1’2. 

with 

Using the same technique as previously, to order a2 and L-’, the lowest excited state is 
to be found at 

Thus the lowest excitation gap is 

AL(11+)  = B’ + 4a2C{1 - [C/8(C - B’)][(tpp - tss)/tsp12 + 23/32L} 

which may be smaller or larger than B‘,  depending on the curly brackets; but the value 
is near B‘  since (U’ is small. This lowest energy excitation has a B’ excitation and an 
average of a2L singlet, charge transfer, RVBS appropriately symmetrised, with a small 
admixture of a triplet charge transfer excitation at NN, and (y2L singlet, charge transfer 
RVBS, also appropriately symmetrised (to lowest order in (U). 
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For small cy, the L-atom ring remains insulating as L + CO: to lowest order, only NN 
charge separation is obtained and the gap is finite. In higher dimensions, the new 
coupling constant will be a2 = 2 ~ ( t , , / C ) ~ ,  where z is the coordination number (the factor 
of 2 is spin); special cases arise in structures with sites that are nearest neighbours to 
nearest neighbours (the ring trimer, honeycomb, and FCC structures, for example). It 
seems clear that metallisation in these ordered systems requires going beyond weak 
coupling (higher order terms in a2) to allow charge separation beyond N N .  

4. Disordered rings 

In the spirit of the above discussion, we consider a simple extension to a disordered 
system. The introduction of vacancies into the ring (disorder) merely introduces finite 
line segments in which electronic hopping can take place. To lowest order in cy, the 
groundstateofsuch asegment, withratoms, has00+ symmetryandliesat -cy2C(r - 1). 
If atoms are allowed to hop into NN vacancies in order to minimise the free energy of the 
system (with a total number of sites L and a total number of atoms N ,  with L ,  N +  CQ 

andN/L = p ) ,  the calculation at thermal equilibrium is straightforward, without further 
assumptions on the atomic and vacancy distributions. 

The probability that all the vacancies are together, in which case the system has only 
one segment, is 

min[ Lp.  L( 1  - p ) ]  

where a = &C/kBTand parentheses enclose binomial coefficients. The probability that 
the system has n line segments of atoms (P,) is the nth term in the above sum, multiplied 
by P,.  If we further specify that there are a total of n segments but that n l  segments have 
L ,  atoms, n2 have L2 atoms, etc, with 

then 

However, the internal energy of the system only depends on the total number of 
segments: 

E ,  - El = a2C(n - 1). 

Note that it has been assumed that k B T 4  B' ,  B. This is reasonable, since a2C/kB = 
lo3 K and B'/kB = 6 X lo4 K, for typical systems and temperatures of interest. 

The peak of the distribution is at a number of segments no: 

no/L e x  = [1/2(e0 - 1)]{-1 + [4p(l - p)(e" - 1) + 1]'/2}. 

The distribution is Gaussian with a standard deviation 

d / L  = [.(P - x>(l - P - -41/[2P(l - P )  - XI. 

These functions are plotted, for various p ,  as a function of a-' in figure 1. 
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Figure 1. Number of segments, peak and 
variance, of the disordered ring with a large 
number of sites ( L ) ,  at fractional occu- 
pation p ,  versus a - ' =  kBT/cuZC. Full 
curves are the peak values; dotted curves 
are the variances, for various values of p 
(top to bottom:p = 0.5; 0.3 and 0.7; 0.2 
and 0.8; 0.1 and 0.9). 

Figure 2. Specific heat results, given as 
C V / k B L [ p ( p  - l)]''* versus a- ' .  Top to 
bottom: p = 0.5; 0.3 and 0.7; 0.2 and 0.8; 
0.1 and 0.9. 

The average energy of the system is 

E = ( - a ' c ~ ) ( p  - n/L)Pn = - a 2 ~ ~ ( p  - x). 
n 

So, for example, the specific heat at constant L and p is 

C" = a2CL(ax/dT)1,,,. 

It is plotted, for various p ,  as a function of ~ 7 - l  in figure 2. It should be noted that the 
temperature at which it peaks is a-' = 0.2 with a weak density dependence in the interval 
0.1 6 p 6 0.9. 

5. Summary 

Motivated by experimental data on the properties of fluid mercury, we have begun 
to study a well defined, simple model for disordered, divalent-atom systems. The 
preliminary work reported here concerns divalent two-level atoms in a one-dimensional 
structure, for weak interatomiccoupling. The ordered system is insulatingin the thermo- 
dynamic limit. The disordered system has all states localised. Our preliminary conclusion 
regarding higher-dimensional ordered systems is that the important parameter will be 
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2 ~ ( f ~ ~ ! C ) ~  and that the system may be metallic if this parameter is not very small. 
Qualitatively this conclusion supports the speculation that the experimental system 
becomes metallic if there are ‘sufficient’ nearest neighbours and this ‘sufficiency’ per- 
colates through the disordered atom-vacancy alloy [3]. Calculations in two and three 
dimensions have been undertaken and will be reported in the future. 
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